Cache Coherency Is the New Normal
You hear a lot about cache coherency these days. In fact, at the recent Linley processor conference, no fewer than three companies announced new cache-coherent networks-on-chip (NoCs).
Caching
The first cache I ever ran into was on a computer at Cambridge University called Titan. It had a 32-word instruction cache, indexed off the lower five bits of the PC. It was a normal direct-mapped cache. If the higher order bits (above 5) of the PC matched the cache address, then instead of fetching the instruction from memory it was pulled from the cache. Of course, this was much faster, that is the point of caches. If the higher order bits didn't match, a cache-miss, the instruction was fetched from memory and also the cache was updated. These days, when three-level caches are common, and cache sizes can be measured in megabytes, this seems almost comically small. Would such a tiny cache make any difference? It turns out, when you think about it, that the architecture of the cache means that any loop of less than 32 instructions will run out of the cache. Since processors spend a lot of time in small loops, especially if they lack instructions for clearing or copying areas of memory, this made a big difference.
Another key thing to note is that the programmers don't have to do anything. If the cache is turned on, then the code will run unchanged, just faster. It is invisible to the programmers. The hardware designers worry about the cache, but they give the illusion to the software engineers that it doesn't exist.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related Blogs
- Using Cache Coherency to Verify the AMBA4 Protocol
- IP-SoC 2011 Trip Report: IP again, new ASSP model, security, cache coherence and more
- Increased CHI Coherency Verification Challenges
- CCIX Coherency: Verification Challenges and Approaches
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms