Arteris vs Sonics battle...Let's talk NoC architecture
The Network on Chip is a pretty recent concept. Let’s try to understand how it works. Anybody who has been involved in the Supercomputer design (like I was in the 80’s), knows that you need a “piece” between the multiple CPU and memory banks, at that time a “crossbar switch”. To make it outrageously simple, you want to interconnect the M blocks on the left side with the N blocks on the right side, to do so you create a switch made of MxN wires.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related Blogs
- Hogan NoC analysis - Sonics SGN, Arteris FlexNoC, ARM NIC 400: Setting the record straight
- NoC Interconnect Technology Becoming Mainstream
- Breaking Down the "Make vs. Buy" Barriers for IP
- The Gartner Hype Cycle & Technology Adoption Lifecycle Explained (using NoC Technology)
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms