Why verification matters in network-on-chip (NoC) design
By Zifei Huang, Adeel Liaquat and Ashish Darbari (Axiomise)
EDN (May 21, 2024)
In the rapidly evolving semiconductor industry, keeping pace with Moore’s Law presents opportunities and challenges, particularly in system-on-chip (SoC) designs. Notably, the number of transistors in microprocessors soared to an unprecedented trillion.
Therefore, as modern applications demand increasing complexity and functionality, improving transistor usage efficiency without sacrificing energy efficiency has become a key goal. Thus, the network-on-chip (NoC) concept has been introduced, a solution designed to address the limitations of traditional bus-based systems by enabling efficient, scalable, and flexible on-chip data transmission.
Designing an NoC involves defining requirements, selecting an architecture, choosing a routing algorithm, planning the physical layout, and conducting verification to ensure performance and reliability. As the final checkpoint before a NoC can be deemed ready for deployment, a deadlock/livelock-free system can be built, increasing confidence in design verification.
In this article, we will dive deeper into a comprehensive methodology for formally verifying an NoC, showcasing the approaches and techniques that ensure our NoC designs are robust, efficient, and ready to meet the challenges of modern computing environments.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related White Papers
- Why network-on-chip IP in SoC must be physically aware
- SoC design: When is a network-on-chip (NoC) not enough?
- Breaking Barriers in SoC Design with Smart NoC Automation
- Why Embedded Software Development Still Matters: Optimizing a Computer Vision Application on the ARM Cortex A8
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS