Transitioning to multicore processing
Rob Oshana and Shuai Wang, Freescale Semiconductor
EETimes (8/31/2011 4:13 PM EDT)
Hesitating to make the shift from single- to multiple-core processing in your design? Here's a guide to making the transition.
The transition to multicore processing requires changing the software programming model, scheduling, partitioning, and optimization strategies. Software often requires modifications to divide the workload among cores and accelerators, to use all available processing in the system and maximize performance. Here's how you and your team can make the switch.
Networking systems, for example, normally include control-plane and data-plane software (shown in Figure 1). The control plane is responsible for managing and maintaining protocols (such as OSPF, SNMP, IPSec/IKE) and other special functions such as high-availability processing, hot plug and play, hot swap, and status backup. Control-plane functions include management, configuration, protocol hand-shaking, security, and exceptions. These functions are reliability sensitive but not extremely time sensitive. Normally, control-plane data packets/frames only occupy ~5% of the overall system load.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Putting multicore processing in context: Part One
- Putting Multicore Processing in Context: Part 2
- Transitioning from DDR4 to DDR5 DIMM Buffer Chipsets
- Partitioning to optimize AI inference for multi-core platforms
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems