Tiles - An Architectural Abstraction for Platform-Based Design
by Drew Wingard
The relentless pace of Moore's Law has caught up with us again. Design teams still struggling under the weight of system-on-a-chip (SOC) designs composed of hopefully-reusable-next-time IP cores are running head-first into a new challenge-trying to manage the interactions of 50 or more somewhat independent cores throughout the design process. What is needed is a new level of abstraction-a level of hierarchy that reduces the number of objects to something a designer can effectively reason over. Some people call this next level of abstraction the platform, but most platform definitions imply a single "metacore" integrating a critical subset of the desired functions that is then integrated with a set of application-specific peripherals.
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- An FPGA-to-ASIC case study for refining smart meter design
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience
- Infinite-ISP: An Open Source Hardware Image Signal Processor Platform for all Imaging Needs
- The role of sockets in platform based design: a case study of the OMAP platform
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS