The pitfalls of mixing formal and simulation: Where trouble starts
By Mark Eslinger, Joe Hupcey and Nicolae Tusinschi (Siemens EDA)
EDN (May 23, 2022)
The most effective functional verification environments employ multiple analysis technologies, where the strengths of each are combined to reinforce each other to help ensure that the device under test (DUT) behaves as specified. However, this creates an inherent challenge of properly comparing—and combining—the results from each source to give a succinct, accurate picture of the verification effort’s true status.
The most common problem we see is when design engineers want to merge the results from formal analysis with the results of RTL code and functional coverage from their UVM testbench, yet they don’t fully understand what formal coverage is providing. Hence, we will start on the familiar ground of simulation-generated code and functional coverage before going into defining formal coverage.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- M31 on the Specification and Development of MIPI Physical Layer
- The Future of Safe and Secure Aerospace Systems
- The complete series of high-end DDR IP solutions of Innosilicon is industry-leading and across major foundry processes
- The Rise of RISC-V and ISO 26262 Compliance
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor