AI, and the Real Capacity Crisis in Chip Design
By Stelios Diamantidis, Synopsys (February 24, 2022)
Chip industry veterans are used to the cyclical nature of semiconductor supply and demand, but the ongoing chip shortage has been particularly tough for many. Supply chain disruptions will likely persist in the coming years and the semiconductor sector is unlikely to return to old norms.
There’s a more pressing crisis on the horizon, however, that will bring the semiconductor industry to its next turning point: The lack of engineering throughput will remain unless we optimize the chip design process.
Persistent chip shortages appear to be due to relatively short–term economic factors. But if we start thinking about chip design in a different way, it could offer new opportunities for advancements in chip production. Disruptions in semiconductor design certainly didn’t start the global chip shortage, but it’s doing its part to exacerbate the crisis.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Integrating VESA DSC and MIPI DSI in a System-on-Chip (SoC): Addressing Design Challenges and Leveraging Arasan IP Portfolio
- The role of cache in AI processor design
- The Growing Imperative Of Hardware Security Assurance In IP And SoC Design
- Bigger Chips, More IPs, and Mounting Challenges in Addressing the Growing Complexity of SoC Design
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS