Scale network processors to 40 Gbps and beyond
Jun 28, 2006 (10:46 AM), CommsDesign
The networking industry has witnessed countless advances since the 1960s. Yet, despite a myriad of changes in applications, protocols and technologies over nearly a half-century, one thing has not changed--the ever increasing need for speed.
The "benchmark bandwidth" required of networking equipment increases by approximately an order of magnitude every decade or so. In the 1960s, 10 kbps was sufficient to connect terminals to mainframes. With the debut of distributed client/server computing in the 1980s, typical data rates increased to the 10-Mbps range with Ethernet and Token Ring LANs. Today's local- and wide-area networks now demand multiple Gigabits-per-second of throughput. And with the advent of IPTV and other bandwidth-hungry applications, tomorrow's networks will require substantially more capacity.
Over the years, the technologies employed to keep pace with bandwidth and its associated performance requirements have also evolved. Ordinary off-the-shelf processors worked well enough for a while. Then along came the custom-designed and application-specific integrated circuits (ASICs) needed to process critical protocols at very high data rates. However, as the number of protocols continued to proliferate, the use of specialized processors and architectures made development projects considerably more complex.
All throughout this period, the industry has pursued a worthy goal--use general-purpose programmable network processors to lower development costs and accelerate the time-to-market for new products and features. This article explores why fulfilling the promise of the network processor has remained so difficult, and outlines how a pipelined architecture can achieve this elusive goal.
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- SOC: Submicron Issues -> SiPs enable new network processors
- Network processors need a new programming methodology
- A 24 Processors System on Chip FPGA Design with Network on Chip
- Connecting the Digital World - The Path to 224 Gbps Serial Links
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS