OS porting and application development for SoC
By Adrian Peirson,
Senior Engineer, Software Systems,
ARM.
Combining the flexibility of an SoC platform and a pre-ported standard OS offers deigners ‘the best of both worlds’
To deliver improved usability in high-end portable consumer products, the use of an appropriate consumer operating system (OS) is becoming far more widespread. Using a commercially supported OS also vastly increases the availability of supported applications. For the device developer, this trend adds major complexity to the problem of system implementation. Porting a complete operating system to a new hardware design adds significantly to the development burden, increasing both time-to-market and expense. Even for those familiar with the integration of a real-time OS, the porting, validation and support of a complex platform OS is a formidable task.
Read More ....
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- Accelerating SoC Evolution With NoC Innovations Using NoC Tiling for AI and Machine Learning
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- Optimal OTP for Advanced Node and Emerging Applications
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design