OS porting and application development for SoC
By Adrian Peirson,
Senior Engineer, Software Systems,
ARM.
Combining the flexibility of an SoC platform and a pre-ported standard OS offers deigners ‘the best of both worlds’
To deliver improved usability in high-end portable consumer products, the use of an appropriate consumer operating system (OS) is becoming far more widespread. Using a commercially supported OS also vastly increases the availability of supported applications. For the device developer, this trend adds major complexity to the problem of system implementation. Porting a complete operating system to a new hardware design adds significantly to the development burden, increasing both time-to-market and expense. Even for those familiar with the integration of a real-time OS, the porting, validation and support of a complex platform OS is a formidable task.
Read More ....
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- Boosting RISC-V SoC performance for AI and ML applications
- Accelerating SoC Evolution With NoC Innovations Using NoC Tiling for AI and Machine Learning
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- Generative AI for Analog Integrated Circuit Design: Methodologies and Applications
Latest Articles
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design