OS porting and application development for SoC
By Adrian Peirson,
Senior Engineer, Software Systems,
ARM.
Combining the flexibility of an SoC platform and a pre-ported standard OS offers deigners ‘the best of both worlds’
To deliver improved usability in high-end portable consumer products, the use of an appropriate consumer operating system (OS) is becoming far more widespread. Using a commercially supported OS also vastly increases the availability of supported applications. For the device developer, this trend adds major complexity to the problem of system implementation. Porting a complete operating system to a new hardware design adds significantly to the development burden, increasing both time-to-market and expense. Even for those familiar with the integration of a real-time OS, the porting, validation and support of a complex platform OS is a formidable task.
Read More ....
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- Accelerating SoC Evolution With NoC Innovations Using NoC Tiling for AI and Machine Learning
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- Optimal OTP for Advanced Node and Emerging Applications
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems