Optimizing Electronics Design With AI Co-Pilots
By Ben Gu, Cadence
EETimes (November 27, 2023)
Design processes are evolving rapidly, and their use will enable the highly optimized ICs, PCBs and systems that we need to keep global innovation on track. Today’s efforts to apply analysis much earlier in the design exploration and validation process are already enabling complex multiphysics analyses and co-optimization across domains. However, increasing design complexity means we may soon need to move beyond such in-design analysis—to processes enabled by machine learning (ML) and AI.
This may sound like a reach, but ML techniques are clearly very powerful, if applied intelligently, and the one thing that the electronics industry is never short of is design data. Surely there must be a thoughtful way to bring them together.
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- Digital PUF IP
Related White Papers
- Revolutionizing Consumer Electronics with the power of AI Integration
- Scaling AI Chip Design With NoC Soft Tiling
- Revolutionizing Chip Design with AI-Driven EDA
- Optimizing LPDDR4 Performance and Power with Multi-Channel Architectures
Latest White Papers
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions
- How Mature-Technology ASICs Can Give You the Edge
- Exploring the Latest Innovations in MIPI D-PHY and MIPI C-PHY