Optimizing Electronics Design With AI Co-Pilots
By Ben Gu, Cadence
EETimes (November 27, 2023)
Design processes are evolving rapidly, and their use will enable the highly optimized ICs, PCBs and systems that we need to keep global innovation on track. Today’s efforts to apply analysis much earlier in the design exploration and validation process are already enabling complex multiphysics analyses and co-optimization across domains. However, increasing design complexity means we may soon need to move beyond such in-design analysis—to processes enabled by machine learning (ML) and AI.
This may sound like a reach, but ML techniques are clearly very powerful, if applied intelligently, and the one thing that the electronics industry is never short of is design data. Surely there must be a thoughtful way to bring them together.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Revolutionizing Consumer Electronics with the power of AI Integration
- Scaling AI Chip Design With NoC Soft Tiling
- Revolutionizing Chip Design with AI-Driven EDA
- Optimizing LPDDR4 Performance and Power with Multi-Channel Architectures
Latest White Papers
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions