Optimizing Electronics Design With AI Co-Pilots
By Ben Gu, Cadence
EETimes (November 27, 2023)
Design processes are evolving rapidly, and their use will enable the highly optimized ICs, PCBs and systems that we need to keep global innovation on track. Today’s efforts to apply analysis much earlier in the design exploration and validation process are already enabling complex multiphysics analyses and co-optimization across domains. However, increasing design complexity means we may soon need to move beyond such in-design analysis—to processes enabled by machine learning (ML) and AI.
This may sound like a reach, but ML techniques are clearly very powerful, if applied intelligently, and the one thing that the electronics industry is never short of is design data. Surely there must be a thoughtful way to bring them together.
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- Revolutionizing Consumer Electronics with the power of AI Integration
- Scaling AI Chip Design With NoC Soft Tiling
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- Revolutionizing Chip Design with AI-Driven EDA
Latest Articles
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design