Multiple clock domain SoCs: Verification techniques
Tejas Dave, Amit Jain & Divyanshu Jain (eInfochips)
EDN (October 23, 2014)
With technology advancement and introduction of more complex SOCs, data transfer between multiple clock domains is more frequent and demanding, and CDC design and verification becomes a more challenging task. An understanding of metastability plays a key role in understanding CDC problems and associated design challenges. Adoption of new verification techniques in the early stages also plays an important role in easing and speeding up multi-clock domain design and verification activities.
EDA tool vendors provide various solutions to check whether proper implementation of CDC is done or not. EDA vendors like Synopsys, Atrenta, Mentor, and Cadence provide solutions through simulation, Linting, and LEC. Here are some of our experiences:
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- Optimizing clock tree distribution in SoCs with multiple clock sinks
- An Automated Flow for Reset Connectivity Checks in Complex SoCs having Multiple Power Domains
- Clock domain modeling is essential in high density SoC design
- Techniques to make clock switching glitch free
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection