Mixed-signal and power-integration packaging solutions
By Jim Gillberg, Director of Automotive Development, Fairchild Semiconductor Corp.
Power Management DesignLine (05/17/10, 06:30:00 AM EDT)
Even before the first transistor was invented, there has been a constant drive to integrate more and more functionality into a single product. There are the obvious cost benefits to putting more functions into the same package or die area, but there are also performance benefits realized by integrating more devices into a single product. For high -peed functions, every signal that must be connected from one integrated circuit to another slows the system down by the addition of significant input/output capacitances for each pin, as well as PC-board routing which requires larger line drivers with more cost and more board area.
In the realm of integrated circuits, this constant need for higher integration has, for the most part, been achieved through constant improvements in the photolithography used to fabricate the devices. Equipment has evolved from contact printing with 0.1 mil resolution through projection printing, use of high-resolution steppers, to direct-write on wafers with E-beam technology, to where we now talk about nanometers of photo resolution.
For a long time, this progress has followed what is generally referred to as Moore's’ law. This defines the ever-increasing complexity of a product that can be integrated onto a piece of silicon. This has defined progress over time for microprocessors, silicon memory, and ASICs. While process complexity has increased to be able to define these extremely small feature sizes, today’s basic lateral CMOS transistors would be recognized by its original inventor.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- SoC Test and Verification -> Testing mixed-signal Bluetooth designs
- Mixed-signal tools fall short for SoC designs
- Opto-electronics -> Monolithic integration requires clever process, packaging schemes
- Mixed-signal design flow enables RF CMOS chip
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events