Making the UWB PHY a "Transparent Patient"
by Johannes Stahl, CoWare Inc. – June 30, 2004
The debate about the relative merits of Multiband OFDM and Direct Sequence UWB (DS-UWB) continues unabated. The proponents of each approach praise its particular merits, leaving designers to perform comparative analyses based upon their own definitions of operational requirements. The IEEE has taken the responsibility to bring order into this chaos, but how does it—and the industry as a whole—make a sensible standards decision without solid comparison data?
Just as medical researchers are doing with the human body, we must look inside the UWB physical layer (PHY) to analyze its operation and identify improvements. The large number of measurements and data required to do so effectively precludes the use of hardware prototypes, which are time consuming and expensive. Computer simulation using fully transparent models of the various approaches is the only methodology that can perform the requisite relative performance analysis in a reproducible, timely and cost-effective fashion.
Click here to read more....
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- Making your UWB solutions ''Future Proof''
- TOPS: The Truth Behind a Deep Learning Lie
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- IC design: A short primer on the formal methods-based verification
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor