Making the UWB PHY a "Transparent Patient"
by Johannes Stahl, CoWare Inc. – June 30, 2004
The debate about the relative merits of Multiband OFDM and Direct Sequence UWB (DS-UWB) continues unabated. The proponents of each approach praise its particular merits, leaving designers to perform comparative analyses based upon their own definitions of operational requirements. The IEEE has taken the responsibility to bring order into this chaos, but how does it—and the industry as a whole—make a sensible standards decision without solid comparison data?
Just as medical researchers are doing with the human body, we must look inside the UWB physical layer (PHY) to analyze its operation and identify improvements. The large number of measurements and data required to do so effectively precludes the use of hardware prototypes, which are time consuming and expensive. Computer simulation using fully transparent models of the various approaches is the only methodology that can perform the requisite relative performance analysis in a reproducible, timely and cost-effective fashion.
Click here to read more....
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Making your UWB solutions ''Future Proof''
- PUF is a Hardware Solution for the Sunburst Hack
- TOPS: The Truth Behind a Deep Learning Lie
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models