Medical imaging process accelerated in FPGA 82X faster than software
Zhongho Chen, Alvin W.Y. Su, Ming-Ting Sun, and Scott Hauck
EETimes (6/21/2011 3:42 PM EDT)
Medical imaging tasks can require high-performance signal processing to convert sensor data into imagery to help with medical diagnostics. FPGAs are a compelling platform for these systems, since they can perform heavily pipelined operations customized to the exact needs of a given computation. In previous work we have benchmarked a CT scanner back-projection algorithm. In this article we focus on an FPGA platform and a high level synthesis tool called Impulse C to speed up a statistical line of reaction (LOR) estimation for a high-resolution Positron Emission Tomography (PET) scanner. The estimation algorithm provides a significant improvement over conventional methods, but the execution time is too long to be practical for clinic applications. Impulse C allows us to rapidly map a C program into a platform with a host processor and an FPGA coprocessor. In this article, we describe some successful optimization methods for the algorithm using Impulse C. The results show that the FPGA implementation can obtain an 82x speedup over the optimized software.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
Related Articles
- IP Gate Count Estimation Methodology during Micro-Architecture Phase
- Unified Methodology for Effective Correlation of SoC Power Estimation and Signoff
- SoCs: Supporting Socketization -> Methodology key to quality
- Exec goes to bat for standard design methodology
Latest Articles
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- RoMe: Row Granularity Access Memory System for Large Language Models