EDA is not enough!
By Michel Tabusse
edadesignline.com (March 17, 2010)
Good EDA tools, even combined within well-automated flows, are not enough to produce quality designs, whatever those designs are for software, systems-on-chip (SoCs), integrated circuits (ICs), intellectual property (IP) or embedded systems. Why is quality so difficult to achieve? Here are some of the things we are finding:
- Quality is often not defined operationally, making measurement and reporting onerous.
- Tools may be used incorrectly.
- Quality reporting is often informal, not objective, or comprised of too much information to be actionable.
- Worldwide teams and concurrent IP/ SoC/ software design produce burdensome quality monitoring overhead.
- Quality compromises tend to be made in order to meet tight schedules.
How does one define quality measures so that they can be easily deployed and used? Every time there is a panel on quality, designers and design managers realize that a huge amount of question-and-answer time is spent on defining quality criteria. And that quality is not the same for every type of design or every company.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Colibri, the codec for perfect quality and fast distribution of professional AV over IP
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
- IP users value quality, support
- SoCs: Supporting Socketization -> Methodology key to quality
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS