How to Reduce Code Size (and Memory Cost) Without Sacrificing Performance
Embedded.com
Nov 29 2005 (17:55 PM)
Today's intelligent compilers offer many options for squeezing more performance out of application code. Many of these optimizations, however, tend to increase overall code size.
As a result, once developers of optimized application code have reached the required performance specifications, there still remains the challenge of bringing code size back under control.
Through an iterative process of building application code using different compiler optimization options and profiling the result, developers can hone in and identify infrequently used and non-critical sections of code to trade off performance where it matters least for reduced code size, providing minimal impact on system performance. Often, varying compiler options to reduce code size can enable developers to decrease the amount of on-chip and external memory an application requires without adversely affecting performance, thereby reducing the overall bill of materials (BOM).
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
- Parameterizable compact BCH codec
Related Articles
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Minimize IC power without sacrificing performance
- How to use snakes to speed up software without slowing down the time-to-market?
- How to accelerate memory bandwidth by 50% with ZeroPoint technology
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension