How to design a better 1.5-V 2.4-GHz CMOS PLL for wireless applications
Mingliang Liu, Lava Technologies
Feb 21, 2006 (2:05 PM), CommsDesign
Since the VCO is one of the most important elements in the PLL system it is an appropriate place to begin this article, which addresses the challenges of designing a 1.5-V 2.4-GHz CMOS Phase Locked Loop (PLL) for wireless LAN applications. The design assumes a specific process, namely TSMC 0.35 micron technology.
The schematic of the VCO is shown in Figure 1. Transistors M8 and M9 form a NMOS cross-coupled differential pair to provide the negative resistance, which is required for generating an oscillation. M0, M1 and R3 form the biasing network for the oscillator. L7 and C8 form the filtering network to suppress the high frequency noise generated by the bias current source.
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
- Parameterizable compact BCH codec
Related Articles
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- How to Design Secure SoCs: Essential Security Features for Digital Designers
- How to design secure SoCs, Part V: Data Protection and Encryption
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension