Growing audio requirements in SoCs
Henk Hamoen, Senior Product Marketing Manager, Synopsys, Inc.
EDN August 7, 2012
As consumer devices such as tablets, media players and home theater systems continue to incorporate more audio functionality, the systems on chip (SoCs) designed for these devices become more complex. These SoCs must support a growing list of audio requirements such as a wider range of high-definition audio compression formats, multi-channel audio content, higher sampling rates and advanced audio post-processing functions.
In addition to the DSP audio processor, audio SoCs need seamlessly integrated analog codecs to provide connections for microphone, line, headphone and speakers, as well as digital peripherals (e.g. I2S, S/PDIF). To deliver the necessary features, designers need to integrate more IP into the SoCs, and they need to do it with fewer resources, smaller budgets, and shorter project schedules.
Innovations in IP integration have traditionally been focused on the hardware aspects, but what really drives system complexity is the software. For audio applications, the software stack needs to support the latest audio standards from companies such as Dolby Laboratories, SRS Labs, DTS and Microsoft, as well as open source formats like Ogg/Vorbis and FLAC. All of these software components must be integrated in a media streaming framework and then into the application software running on the host processor.
Project schedules, which ultimately drive the dates of when the product is introduced to the market, are largely determined by the time it takes to build the entire application software stack. The ability to quickly integrate all the necessary hardware and software IP into a complete system can turn a great design undertaking into a real business success. Being the first to market with the right features at a lower cost is a significant differentiator.
Design teams that leverage a pre-verified hardware and software IP subsystem can drastically reduce design integration effort, lower integration risk and accelerate time to market. IP subsystems enable them to take advantage of higher integration levels and the latest technologies for system integration, including prototyping to accelerate software development and full system validation.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- The Growing Market for Specialized Artificial Intelligence IP in SoCs
- Consumer IC Advances -> Meeting MPEG-4 advanced audio coding requirements
- Multicore SoCs change interconnect requirements
- Integrating audio codecs in next-generation SoCs for smartphones and tablets
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models