Multicore SoCs change interconnect requirements
Greg Shippen, Freescale Semiconductor
EE Times (10/20/2008 12:01 AM EDT)
The recent appearance of multicore system-on-chip (SoC) devices has rearranged the boundaries among silicon devices, boards and subsystems. This trend has led to significant changes in chip-to-chip and board-to-board interconnect requirements. Are existing standards-based interconnects ready for this transition?
With the introduction of the microprocessor in the 1970s, simple computing systems were constructed on a single board using a discrete processor, memory controller and I/O interface device. Board-level buses connected the devices; when higher performance was desired, multiple boards were assembled together. Backplanes provided communication between cards using a system-level bus.
These board- and system-interconnect protocols were proprietary. Over time, closed protocols gave way to standardized protocols such as Ethernet, PCI Express or RapidIO.
EE Times (10/20/2008 12:01 AM EDT)
The recent appearance of multicore system-on-chip (SoC) devices has rearranged the boundaries among silicon devices, boards and subsystems. This trend has led to significant changes in chip-to-chip and board-to-board interconnect requirements. Are existing standards-based interconnects ready for this transition?
With the introduction of the microprocessor in the 1970s, simple computing systems were constructed on a single board using a discrete processor, memory controller and I/O interface device. Board-level buses connected the devices; when higher performance was desired, multiple boards were assembled together. Backplanes provided communication between cards using a system-level bus.
These board- and system-interconnect protocols were proprietary. Over time, closed protocols gave way to standardized protocols such as Ethernet, PCI Express or RapidIO.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- 10-bit SAR ADC - XFAB XT018
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
Related Articles
- Using dynamic run-time scheduling to improve the price-performance-power efficiency of heterogeneous multicore SoCs
- Multicore microprocessors and embedded multicore SOCs have very different needs
- Build low power video SoCs with programmable multi-core video processor IP
- Using drowsy cores to lower power in multicore SoCs
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor