Get multicore performance from one core
By Kevin D. Kissell and Pete Del Vecchio, MIPS Technologies
Apr 18 2007 (0:15 AM), Embedded Systems Design
System-on-chip (SoC) designers know what it's like to do more with less. They're constantly challenged by ever-increasing constraints on system cost and power consumption while being tasked with increasing the performance and functionality of their designs. The tricks of the trade available to designers are, at best, a set of difficult trade-offs.
For example, some designers ramp up the processor's clock speed, but this approach usually results in higher power consumption. In addition, memory performance hasn't kept pace with processor technology, as Figure 1 illustrates, and this mismatch limits any significant gains in system performance. A multicore system is another option, but this suffers from a larger die area and higher cost. Any performance increase comes at a fairly substantial cost in silicon and system power.
Apr 18 2007 (0:15 AM), Embedded Systems Design
System-on-chip (SoC) designers know what it's like to do more with less. They're constantly challenged by ever-increasing constraints on system cost and power consumption while being tasked with increasing the performance and functionality of their designs. The tricks of the trade available to designers are, at best, a set of difficult trade-offs.
For example, some designers ramp up the processor's clock speed, but this approach usually results in higher power consumption. In addition, memory performance hasn't kept pace with processor technology, as Figure 1 illustrates, and this mismatch limits any significant gains in system performance. A multicore system is another option, but this suffers from a larger die area and higher cost. Any performance increase comes at a fairly substantial cost in silicon and system power.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- 10-bit SAR ADC - XFAB XT018
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
Related Articles
- How to get the best performance and utilization from Xilinx Virtex-5 FPGAs
- Achieving multicore performance in a single core SoC design using a multi-threaded virtual multiprocessor: Part 2
- A Flexible, Low Power, High Performance DSP IP Core for Programmable Systems-on-Chip
- Putting multicore processing in context: Part One
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor