Achieving multicore performance in a single core SoC design using a multi-threaded virtual multiprocessor: Part 2
By Kevin D. Kissell and Pete Del Vecchio, MIPS Technologies
Nov 27 2006 (0:30 AM), Embedded.com
The key to the Virtual Processor Element (VPE) approach used in the MIPS 34K core is a set of extensions of the processor's basic instruction set architecture, rather than a specific set of hardware features to enable efficient multi-threading. In the case of the 34K core, the MT ASE is an application-specific extension of the MIPS32/MIPS64 instruction set and privileged resource architecture, meaning that it is a true architectural superset.
In the light of all this, the MIPS MT ASE strives to provide a framework both for the management of parallel threads on the same CPU and for the management of parallel threads across multiple cores, and indeed for the migration of threads from one multi-threaded processor to another.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- Internal JTAG - A cutting-edge solution for embedded instrument testing in SoC: Part 2
- Internal JTAG - A cutting-edge solution for embedded instrument testing in SoC: Part 1
- Integrating VESA DSC and MIPI DSI in a System-on-Chip (SoC): Addressing Design Challenges and Leveraging Arasan IP Portfolio
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions