Deliver "Smarter" Faster: Design Methodology for AI/ML Processor Design
By Joe Sawicki, executive vice president of IC EDA division, Mentor
EETimes (June 19, 2019)
New design tools can develop circuits for AI and machine learning faster than ever. AI/ML is being used to make those same design tools even faster.
We are at the beginning of an age where artificial intelligence (AI) processing will advance in sophistication rapidly and become ubiquitous. While the concept of AI — giving machines the ability to mimic cognitive functions to learn and solve problems and then take an action — has been an academic discipline since the mid-1950s, it wasn’t until the last five years that AI processing, mostly in the form of machine learning (ML), could step out of the dimly-lit halls of research and supercomputer one-offs and move to practical everyday use. Why?
The amount of data generated from the internet and billions of smart devices alone has given us more than enough data to collect sizable data sets with which we can have ML filter and train ML-based systems to use. In addition, today we have enough ubiquitous high-performance compute power in smart devices and the high-bandwidth communications infrastructure to process and transfer massive data sets quickly. This compute power also gives us the canvas to develop ever more sophisticated and specialized algorithms for particular tasks, further expanding the application of AI/ML.
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- Physical Design Exploration of a Wire-Friendly Domain-Specific Processor for Angstrom-Era Nodes
- Formal-based methodology cuts digital design IP verification time
- VLSI Physical Design Methodology for ASIC Development with a Flavor of IP Hardening
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection