Using drowsy cores to lower power in multicore SoCs
Cody Croxton, Ben Eckermann and David Lapp
EETimes (6/29/2011 2:18 PM EDT)
Freescale engineers describe a cascading power management technique that steers tasks to a smaller number of cores during non-peak activity periods so that the idle cores can enter a minimal-power or “drowsy” state. Multicore processing has enabled higher and higher levels of processing capability, but with a price: higher levels of power consumption. Cascading power management is a technique that steers tasks to a smaller number of cores during non-peak activity periods so that the idle cores can enter a minimal-power or “drowsy” state.
When packet traffic increases again, the technique allows a rapid return to fully loaded conditions. Cascading power management is not simply a power-saving technique; it is also a workload management technique that distributes packet processing in a more efficient way.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- How NoCs ace power management and functional safety in SoCs
- An IP core based approach to the on-chip management of heterogeneous SoCs
- Get the right mix when integrating Power Management Solutions into SoCs
- Using dynamic run-time scheduling to improve the price-performance-power efficiency of heterogeneous multicore SoCs
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS