Using drowsy cores to lower power in multicore SoCs
Cody Croxton, Ben Eckermann and David Lapp
EETimes (6/29/2011 2:18 PM EDT)
Freescale engineers describe a cascading power management technique that steers tasks to a smaller number of cores during non-peak activity periods so that the idle cores can enter a minimal-power or “drowsy” state. Multicore processing has enabled higher and higher levels of processing capability, but with a price: higher levels of power consumption. Cascading power management is a technique that steers tasks to a smaller number of cores during non-peak activity periods so that the idle cores can enter a minimal-power or “drowsy” state.
When packet traffic increases again, the technique allows a rapid return to fully loaded conditions. Cascading power management is not simply a power-saving technique; it is also a workload management technique that distributes packet processing in a more efficient way.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- How NoCs ace power management and functional safety in SoCs
- An IP core based approach to the on-chip management of heterogeneous SoCs
- Get the right mix when integrating Power Management Solutions into SoCs
- Using dynamic run-time scheduling to improve the price-performance-power efficiency of heterogeneous multicore SoCs
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions