Five steps to reliable, low-cost, bug-free software with static code analysis
Nikola Valerjev, Green Hills Software
(July 05, 2014)
Numerous studies have shown increases in software code reliability and developer efficiency through the use of static source analysis. There is no dispute that there are large benefits to be gained for most organizations.
One problem is that there are no standards that specify what static source analysis means, or what types of defects it should be detecting. Several government agencies, including Department Of Homeland Security, National Institute of Standards and Technology, and FDA have been trying to develop a set of guidelines and recommendations to specify exactly that, but there has been no clear solution as of yet.
One of the fundamental issues has been the difficulty in defining what defects need to be detected and at what rates. However, that doesn’t take away from the fact that static source analysis has been proven as an extremely effective way to solve many issues that software developers are faced with.
With so many choices and no standards, a new problem arises: How do you pick a static analysis tool that is right for your organization?
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Building more secure embedded software with code coverage analysis
- Practical Applications of Statistical Static Timing Analysis
- Source Code Analysis in an Agile World
- Making source code analysis part of the software development process
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant