Infusing Speed and Visibility Into ASIC Verification
By Mario Larouche, Synplicity
(02/19/08, 01:48:00 PM EST) -- Embedded.com
High-performance, high-capacity FPGAs continue to experience an exponential growth in usage, both in their role as prototypes for ASIC/SoC designs and as systems in their own right. These designs typically involve complex combinations of hardware and embedded software (and also, possibly, application software).
This is resulting in a verification crisis because detecting, isolating, debugging, and correcting bugs now consumes significantly more time, money, and engineering resources than creating the design in the first place.
The problem is that bugs in this class of design can be buried deep in the system and can manifest themselves in non-deterministic ways based on complex and unexpected interactions between the hardware and the software. Simply detecting these bugs can require extremely long and time-consuming test sequences.
Once a problem is detected, actually debugging the design requires a significant amount of time and effort. Furthermore, when verification tests are performed using real-world data, such as a live video stream from a digital camera, an intermittent bug may be difficult, if not impossible, to replicate.
There are a variety of verification options available to engineers, including software simulation, hardware simulation acceleration, hardware emulation, and FPGA-based prototypes. Each approach has its advantages and disadvantages (Table 1 below).
RTL simulators, for example, are relatively inexpensive, but full-system verification performed using this approach is extremely slow. One major advantage of software simulation is visibility into the design. Having said this, as more signals are monitored and the values of these signals are captured, simulation slows even farther.
(02/19/08, 01:48:00 PM EST) -- Embedded.com
High-performance, high-capacity FPGAs continue to experience an exponential growth in usage, both in their role as prototypes for ASIC/SoC designs and as systems in their own right. These designs typically involve complex combinations of hardware and embedded software (and also, possibly, application software).
This is resulting in a verification crisis because detecting, isolating, debugging, and correcting bugs now consumes significantly more time, money, and engineering resources than creating the design in the first place.
The problem is that bugs in this class of design can be buried deep in the system and can manifest themselves in non-deterministic ways based on complex and unexpected interactions between the hardware and the software. Simply detecting these bugs can require extremely long and time-consuming test sequences.
Once a problem is detected, actually debugging the design requires a significant amount of time and effort. Furthermore, when verification tests are performed using real-world data, such as a live video stream from a digital camera, an intermittent bug may be difficult, if not impossible, to replicate.
There are a variety of verification options available to engineers, including software simulation, hardware simulation acceleration, hardware emulation, and FPGA-based prototypes. Each approach has its advantages and disadvantages (Table 1 below).
RTL simulators, for example, are relatively inexpensive, but full-system verification performed using this approach is extremely slow. One major advantage of software simulation is visibility into the design. Having said this, as more signals are monitored and the values of these signals are captured, simulation slows even farther.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Test engineers must join ASIC flow early
- Altera courts ASIC designers with block-based Stratix PLD
- Retargeting IP -> Clearing ASIC obsolescence hurdles
- Retargeting IP -> ASIC generation revamped for IP reuse
Latest Articles
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval