Building advanced Cortex-M3 applications
By Jean J Labrosse from Micrium, Lotta Frimanson and Anders Lundgren from IAR Systems
Embedded.com (04/08/09, 12:36:00 AM EDT)
The ARM Cortex-M3 architecture provides many improvements compared with its predecessor, the popular ARM7/9, and is designed to be particularly suitable for cost-sensitive embedded applications that require deterministic system behavior.
This article describes how developers can best utilize the advanced capabilities of the Cortex-M3 when designing embedded applications.
Comparing ARM7/9 to Cortex-M3
Cortex-M3 is a member of the Cortex-M family, one of the three ARM Cortex architectures that were introduced to the embedded marketplace in 2004, and is being integrated into low-cost embedded microcontrollers (MCUs) from an increasing number of silicon vendors.
A comparison of the main characteristics of Cortex-M3 with those of ARM7/9 is shown in Table 1 below.
Table 1: Comparison of ARM7/9 and Cortex-M3 characteristics
The Cortex-M3 improves on the ARM7/9 in most qualitative estimates " simpler stack architecture, better interrupt controller, and higher-performance instruction set, as well as enhanced debug capabilities, all of which can significantly affect end-product performance.
Embedded.com (04/08/09, 12:36:00 AM EDT)
The ARM Cortex-M3 architecture provides many improvements compared with its predecessor, the popular ARM7/9, and is designed to be particularly suitable for cost-sensitive embedded applications that require deterministic system behavior.
This article describes how developers can best utilize the advanced capabilities of the Cortex-M3 when designing embedded applications.
Comparing ARM7/9 to Cortex-M3
Cortex-M3 is a member of the Cortex-M family, one of the three ARM Cortex architectures that were introduced to the embedded marketplace in 2004, and is being integrated into low-cost embedded microcontrollers (MCUs) from an increasing number of silicon vendors.
A comparison of the main characteristics of Cortex-M3 with those of ARM7/9 is shown in Table 1 below.
Table 1: Comparison of ARM7/9 and Cortex-M3 characteristics
The Cortex-M3 improves on the ARM7/9 in most qualitative estimates " simpler stack architecture, better interrupt controller, and higher-performance instruction set, as well as enhanced debug capabilities, all of which can significantly affect end-product performance.
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- Migrating ARM7 code to a Cortex-M3 MCU
- Introducing ARM Cortex-M23 and Cortex-M33 Processors with TrustZone for ARMv8-M
- Amba bus may move MIPS into ARM territory
- Rapidly Implementing Synthesizable ARM IP (By Alan Gibbons, Synopsys and John Biggs, ARM)
Latest Articles
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design