Analyzing Collusion Threats in the Semiconductor Supply Chain
By Sanjay (Jay) Rekhi 1, Kostas Amberiadis 1, Abir Ahsan Akib 2, Ankur Srivastava 2
1 Computer Security Information Technology Laboratory
2 Electrical and Computer Engineering University of Maryland, College Park
Abstract
This work proposes a framework for analyzing threats related to the semiconductor supply chain. The framework introduces a metric that quantifies the severity of different threats subjected to a collusion of adversaries from different stages of the supply chain. Two different case studies are provided to describe the real-life application of the framework. The metrics and analysis aim to guide security efforts and optimize the trade-offs of hardware security and costs.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Securing the IC Supply Chain - Integrating PUF-Based hardware security
- A Time for Rebalancing Global Patent Strategies in the Semiconductor Market?
- Reverse Disaggregation - How Silicon IP Will Change the Semiconductor Supply Chain
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS