Agile Verification for SoC Design
By Paul Cunningham, Cadence Design Systems
EETimes (June 3, 2021)
As agile methods are established to improve productivity and quality, interest is growing in hardware design.
Still, success in the hardware domain is generally perceived to have been limited. Reality is probably somewhat better than perception as some agility trends in hardware are not explicitly labeled as such.
For example, we see increasing efforts to decouple IP-level design and verification from SoC-level design and verification. In that case, each IP team runs asynchronously from SoC projects that operate on a “train model,” picking up whatever version of the IPs ready at the time an SoC design leaves the station.
While not branded as agile, this approach does align with an agile philosophy.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related White Papers
- Early Interactive Short Isolation for Faster SoC Verification
- The SoC design: What’s next for NoCs?
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models
- Simplifying SoC Verification by communicating between HVL Env and processor
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS