A practical approach to IP quality inspection
Bernard Murphy, Atrenta Inc.
9/26/2011 4:24 PM EDT
Not everyone likes surprises.
If you are a chip designer working with third-party IP, you have learned that surprises, not always of the good kind, are an inevitable part of the package. And you are not alone – the use and cost associated with third-party IP are on the rise.
So what can you do about it? Do you already have, or plan to have a systematic approach to inspect IP quality on delivery?
Clearly defining what you mean by “quality” can help both you and your supplier converge more quickly on a better flow. Furthermore, your definition of quality probably needs to expand beyond a bug-centric view. A robust process that can automatically assess quality at incoming inspection can have a large impact on your schedule and overall well-being. Instituting such a system may not prevent issues, but it will ensure that issues are trapped quickly, at the source, before they trigger fire-drills later in the design process.
If you are an IP supplier, I’m sure you are already familiar with the concept of “smoke tests” as a quick way to flush out problems in the inner loop of development. This kind of analysis can be used not only to validate correctness but also to give a quick, albeit coarse, assessment of design parameters, as I will explain below. When you are in what-if exploration, this can help you explore more options, more quickly than full implementation analyses would allow.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
- Increasing bandwidth to 128 GB/s with a tailored PCIe 6.0 IP Controller
- A comprehensive approach to enhancing IoT Security with Artificial Intelligence
- BCD Technology: A Unified Approach to Analog, Digital, and Power Design
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant