Using signal compression to ease migration to a 4G wireless infrastructure
pldesignline.com (October 20, 2008)
Through the use of multiple-antenna technologies and orthogonal-frequency-division-multiplexing, fourth generation wireless technologies such as Long-Term Evolution (LTE), WiMAX, and Super3G will offer much greater capacity to mobile customers. However, what represents a tremendous opportunity for mobile customers for faster downloads, video at higher frames rates and resolution, and streaming audio, also poses challenges to the CAPEX structure for the mobile operator, particularly in the fiber optic transport to their radio heads.
In fact, mobile operators can end up spending as much in wireline technology as they do for wireless technologies with 4G. To address these challenges, signal compression technology offers the promise of reducing the bit rates for carrying baseband data to the radio elements, and therefore keeping fiber optic transport costs in line with existing 3G systems.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- A 4GHz fractional-N synthesizer for multi-mode wireless applications
- MPEG Standards -> End user reaps benefit of wireless multimedia structure
- Wireless lan standard holds back Bluetooth
- Reuse eases wireless SoC efforts
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions