Using signal compression to ease migration to a 4G wireless infrastructure
pldesignline.com (October 20, 2008)
Through the use of multiple-antenna technologies and orthogonal-frequency-division-multiplexing, fourth generation wireless technologies such as Long-Term Evolution (LTE), WiMAX, and Super3G will offer much greater capacity to mobile customers. However, what represents a tremendous opportunity for mobile customers for faster downloads, video at higher frames rates and resolution, and streaming audio, also poses challenges to the CAPEX structure for the mobile operator, particularly in the fiber optic transport to their radio heads.
In fact, mobile operators can end up spending as much in wireline technology as they do for wireless technologies with 4G. To address these challenges, signal compression technology offers the promise of reducing the bit rates for carrying baseband data to the radio elements, and therefore keeping fiber optic transport costs in line with existing 3G systems.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- A 4GHz fractional-N synthesizer for multi-mode wireless applications
- MPEG Standards -> End user reaps benefit of wireless multimedia structure
- Wireless lan standard holds back Bluetooth
- Reuse eases wireless SoC efforts
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems