Argument for anti-fuse non-volatile memory in 28nm high-K metal gate
Andre Hassan, Kilopass Technology Inc.
EETimes (10/15/2011 1:17 PM EDT)
With 28nm high-K metal Gate (HKMG) semiconductor production ramping in 2012, system-on-chip (SoC) designers are presented with the silicon real estate and economic incentive to integrate more functionality on-chip. One function that continues to be challenging for on-chip integration is non-volatile memory (NVM) despite its many advantages. At smaller process geometries, especially 28nm HKMG, the challenges to integrating NVM such as flash, pseudo flash, and e-fuse are effectively addressed with an anti-fuse solution.
To read the full article, click here
Related Semiconductor IP
- NVM OTP XBC TSMC N7 1.8V
- NVM OTP XBC TSMC N6 1.8V
- NVM OTP XBC TSMC N5A 1.2V Automotive Grade 1 with Functional Safety
- NVM OTP XBC TSMC N5 1.2V
- NVM OTP XBC TSMC N4P 1.2V
Related Articles
- Anti-fuse memory provides robust, secure NVM option
- Gate arrays getting a new lease on life
- Embattled gate array players pull out an ace
- Hardware-assisted verification gate counts soar
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor