Using verification coverage with formal analysis
Vinaya Singh, Joseph Hupcey III, Cadence Design Systems Inc.
EEtimes (4/13/2011 9:13 AM EDT)
Introduction
Verification engineers are increasingly using coverage metrics such as code coverage and functional coverage to guide the verification process to completion. These metrics, however, were developed specifically for simulation. Many contemporary verification flows also include formal analysis tools that provide exhaustive block-level proofs based on properties or assertions. The level of coverage provided by these tools needs to be evaluated, too – but it’s necessary to understand how formal “coverage” differs from simulation coverage, and how formal coverage results can reinforce, or in some cases even replace, coverage created by simulation engines.
In metric-driven verification flows, an executable verification plan tracks simulation coverage metrics on an ongoing basis, using the metrics to evaluate the completion of the verification process. As a result, engineers can quickly see whether a block is completely verified, or if further tests are needed. Steps of the process include developing the verification plan, constructing tests, executing tests, and measuring and analyzing coverage metrics.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- SoC Test and Verification -> Coverage analysis essential in ATE
- Getting the most out of formal analysis
- Pragmatic Adoption of Formal Analysis
- A Comparison of Assertion Based Formal Verification with Coverage driven Constrained Random Simulation, Experience on a Legacy IP
Latest White Papers
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor