SystemVerilog Reference Verification Methodology: VMM Adoption
(09/04/2006 8:22 AM EDT), EE Times
The larger and more complex that system-on-chip (SoC) designs grow, the more verification dominates the development process. In fact, effective design reuse puts even more pressure on the verification team to reduce their part of the schedule. The best solution to this dilemma is the adoption and deployment of a reuse-oriented, coverage-driven methodology that yields more efficient verification, while also increasing the likelihood of first-silicon success.
This is the last in a series of four articles outlining a reference verification methodology that meets these goals for both RTL and system-level verification. This methodology is enabled by the SystemVerilog hardware design and verification language standard and is documented in the Verification Methodology Manual (VMM) for SystemVerilog, a book jointly authored by ARM and Synopsys. This article focuses on ways to adopt the VMM methodology and deploy it quickly throughout an entire SoC project.
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- SystemVerilog reference verification methodology: Introduction
- SystemVerilog reference verification methodology: RTL
- SystemVerilog reference verification methodology: ESL
- Five Vital Steps to a Robust Testbench with DesignWare Verification IP and Reference Verification Methodology (RVM)
Latest White Papers
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Data Movement Is the Energy Bottleneck of Today’s SoCs