Shifting Mindsets: Static Verification Transforms SoC Design at RT Level
Pranav Ashar, CTO, Real Intent Inc.
EETimes (3/6/2015 08:29 AM EST)
Teams 'shift left' to tackle challenges earlier in the design flow, says CTO of Real Intent, an EDA software design tools company.
We are at the dawn of a new age of digital verification for SoCs. A fundamental change is underway. We are moving away from a tool and technology approach — “I have a hammer, where are some nails?” — and toward a verification-objective mindset for design sign-off, such as “Does my design achieve reset in two cycles?”
Objective-driven verification at the RT level now is being accomplished using static-verification technologies. Static verification comprises deep semantic analysis (DSA) and formal methods. DSA is about understanding the purpose and intent of logic, flip-flops, state machines, etc. in a design, in the context of the verification objective being addressed. When this understanding is at the core of an EDA tool set, a major part of the sign-off process happens before the use or need of formal analysis.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- BIST Verification at SoC level
- Creating IP level test cases which can be reused at SoC level
- Agile Verification for SoC Design
- A Survey on SoC Security Verification Methods at the Pre-silicon Stage
Latest White Papers
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor