Smart Engine for Public Key cryptography
Sébastien Rabou, Denis Galerin, Thierry Pauwels
Barco Silex
The need for security in embedded application is continuously rising. And Public Key cryptography is one of the most common ways to secure data communication. But Public Key processing requires very large computation capability.
Processors are commonly used to perform very complex operations. However, the heavy processing load generated by Public Key cannot be addressed by CPUs without significantly degrading system performances.
Of course, we can use hardware accelerators. But, pure RTL blocks are not flexible enough to support the various Public Key algorithms (ECC, RSA, ECDSA, …). Moreover, data transfers must still be controlled by the main processor.
Smart Engine provides the optimal combination of hardware and software (micro-code). This kind of architecture provides the best of both worlds: the efficiency of hardware and the flexibility of software.
Furthermore, the Smart Engine can be scalable. It will always provide an optimal balance between gate-count, performance, functionality and power. And by supporting standard interfaces, the Smart Engine is really easy to integrate in complex system.
This white paper explains why and how the Smart Engine is ideally applied to Public Key cryptography. It provides more details about the architecture as we have implemented it in the BA414E Public Key Crypto Engine.
Related Semiconductor IP
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
- PUF Hardware Premium with key wrap and certification support
Related White Papers
- Securing your apps with Public Key Cryptography & Digital Signature
- Public key cryptography and security certificates
- Securing the IoT: Part 1 - Public key cryptography
- ECC Holds Key to Next-Gen Cryptography
Latest White Papers
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Data Movement Is the Energy Bottleneck of Today’s SoCs