Self-testing in embedded systems: Software failure
Colin Walls, Mentor Graphics
embedded.com (February 23, 2016)
All electronic systems carry the possibility of failure. An embedded system has intrinsic intelligence that facilitates the possibility of predicting failure and mitigating its effects. This two-part series reviews the options for self-testing that are open to the embedded software developer, along with testing algorithms for memory and some ideas for self-monitoring software in multi-tasking and multi-CPU systems. In part one, we looked at self-testing approaches to guard against hardware failure. Here in part two, we look at self-testing methods that address software malfunctions.
As was mentioned in the introduction to part one, the acceptance of possible failure is a key requirement for building robust systems. This is extremely relevant when considering the possibility of software failure. Even when great care has been taken with the design, testing and debugging of code, it is almost inevitable that undiscovered bugs lurk in all but the most trivial code. Predicting a failure mode is tough, as this requires knowledge of the nature of the bug that leads to the failure and, if that knowledge were available, the bug would have been expunged during development.
The best approach is to recognize that there are broadly two types of software malfunction: data corruption and code looping. Some defensive code can be implemented to detect these problems before too much damage is done.
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- Designing low-energy embedded systems from silicon to software
- Role of Embedded Systems and its future in Industrial Automation
- Android, Linux and Real-Time Development for Embedded Systems
- NAND Flash memory in embedded systems
Latest White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU