Secure Embedded Systems: Digging for the Roots of Trust
Many embedded designs absolutely have to work right. A malfunction could do unacceptable harm to persons or property. Until recently, this requirement has been addressed through careful design and hardware reliability: if the software and the logic are right and there are no hardware failures, the system will work.
But today we live in the age of undeclared cyber warfare. If your system must work, you must assume that everyone from bored hackers to criminal gangs to lavishly funded government laboratories will attack it. In order to defend your system, you must determine what—and, eventually, whom—you can trust. This is not an easy, or, some argue, even an achievable quest. But undertake it you must.
To read the full article, click here
Related Semiconductor IP
- UCIe Chiplet PHY & Controller
- MIPI D-PHY1.2 CSI/DSI TX and RX
- Low-Power ISP
- eMMC/SD/SDIO Combo IP
- DP/eDP
Related White Papers
- The Future of Safe and Secure Aerospace Systems
- The realities of developing embedded neural networks
- Are you optimizing the benefits of cloud computing for faster reliability verification?
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
Latest White Papers
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
- The pivotal role power management IP plays in chip design
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware