Secure Embedded Systems: Digging for the Roots of Trust
Many embedded designs absolutely have to work right. A malfunction could do unacceptable harm to persons or property. Until recently, this requirement has been addressed through careful design and hardware reliability: if the software and the logic are right and there are no hardware failures, the system will work.
But today we live in the age of undeclared cyber warfare. If your system must work, you must assume that everyone from bored hackers to criminal gangs to lavishly funded government laboratories will attack it. In order to defend your system, you must determine what—and, eventually, whom—you can trust. This is not an easy, or, some argue, even an achievable quest. But undertake it you must.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- The Future of Safe and Secure Aerospace Systems
- Colibri, the codec for perfect quality and fast distribution of professional AV over IP
- The realities of developing embedded neural networks
- Are you optimizing the benefits of cloud computing for faster reliability verification?
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience