RRAM: A New Approach to Embedded Memory
Sylvain Dubois, Sr. Director, Strategic Marketing & Business Development, Crossbar
EETimes (2/11/2014 08:30 AM EST)
The emergence of the Internet of Things (IoT) and the insatiable demand for smart devices in every aspect of life is driving a complete overhaul of traditional wisdom in the microcontroller and embedded memory markets.
As electronic devices become smarter, the software code becomes larger and needs to be processed faster to handle the communication protocols, authentication, message generation, and historical backlog. The reality is now dawning on our industry that current memory technology just can't deliver upon this new generation of code storage capacity and performance demands, with embedded software code increasing quickly from a few KiloBytes to several MegaBytes.
With analyst firms such as Web-Feet Research predicting that the embedded memory market for consumer electronics will reach over $2.88 billion by 2018, the time is now to figure out a solution to this problem. If traditional memory technologies can't meet the demand, then what can? And with Flash so ubiquitous in consumer electronics designs, is it even plausible to consider replacing the existing worn-out technology?
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- A new era for embedded memory
- New Realities Demand a New Approach to System Verification and Validation
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology
- A comprehensive approach to enhancing IoT Security with Artificial Intelligence
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models