Revolutionizing AI Inference: Unveiling the Future of Neural Processing
By Virgile Javerliac, Neurxcore
EETimes Europe (January 12, 2024)
To overcome CPU and GPU limitations, hardware accelerators have been designed specifically for AI inference workloads, enabling highly efficient and optimized processing while minimizing energy consumption.
The AI industry encompasses a dynamic environment influenced by technological advancements, societal needs and regulatory considerations. Technological progress in machine learning, natural-language processing and computer vision has accelerated AI’s development and adoption. Societal demands for automation, personalization and efficiency across various sectors, including healthcare, finance and manufacturing, have further propelled the integration of AI technologies. Additionally, the evolving regulatory landscape emphasizes the importance of ethical AI deployment, data privacy and algorithmic transparency, guiding the responsible development and application of AI systems.
The AI industry combines both training and inference processes to create and deploy AI solutions effectively. Both AI inference and AI training are integral components of the overall AI lifecycle, and their significance depends on the specific context and application. While AI training is crucial for developing and fine-tuning models by learning patterns and extracting insights from data, AI inference plays a vital role in utilizing these trained models to make real-time predictions and decisions. The growing importance of AI inference—more than 80% of AI tasks today—lies in its pivotal role in driving data-driven decision-making, personalized user experiences and operational efficiency across diverse industries.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related White Papers
- Revolutionizing Consumer Electronics with the power of AI Integration
- The Growing Importance of AI Inference and the Implications for Memory Technology
- The realities of developing embedded neural networks
- The Future Of Chip Design
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core