Open-source hardware for embedded security
Geoffrey Ottoy, Bart Preneel, Jean-Pierre Goemaere, Nobby Stevens, and Lieven De Strycker
EDN (February 4, 2013)
Imagine you’re waiting in line, queuing to enter a major event. The ticket you have bought online is stored on your smart phone. As you swipe your phone over some designated area, an NFC connection is set up, your ticket is validated and the gates open to let you in. And the good thing is, that it all happened anonymously.
In this kind of applications, your anonymity can be guaranteed by the use of recently developed anonymous credentials protocols like Idemix (IBM) or U-Prove (Microsoft). These protocols rely on Zero-Knowledge Proofs-of-Knowledge (ZKPK); you prove that you have knowledge of a certain attribute without revealing its value. The attribute is bound to a public key in a so-called commitment.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Hardware Security Requirements for Embedded Encryption Key Storage
- Boost MCU security AND performance with hardware accelerated crypto
- Deciphering phone and embedded security - Part 4: Ideal platform for next-generation embedded devices
- Memory solution addressing power and security problems in embedded designs
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience