Open-source hardware for embedded security
Geoffrey Ottoy, Bart Preneel, Jean-Pierre Goemaere, Nobby Stevens, and Lieven De Strycker
EDN (February 4, 2013)
Imagine you’re waiting in line, queuing to enter a major event. The ticket you have bought online is stored on your smart phone. As you swipe your phone over some designated area, an NFC connection is set up, your ticket is validated and the gates open to let you in. And the good thing is, that it all happened anonymously.
In this kind of applications, your anonymity can be guaranteed by the use of recently developed anonymous credentials protocols like Idemix (IBM) or U-Prove (Microsoft). These protocols rely on Zero-Knowledge Proofs-of-Knowledge (ZKPK); you prove that you have knowledge of a certain attribute without revealing its value. The attribute is bound to a public key in a so-called commitment.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- Hardware Security Requirements for Embedded Encryption Key Storage
- Deciphering phone and embedded security - Part 4: Ideal platform for next-generation embedded devices
- Memory solution addressing power and security problems in embedded designs
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity