Use NAND Flash for cost, density and performance advantages for mobile handsets
By Scott Beekman, Toshiba America Electronic Components, Inc.
Mobile Handset DesignLine (06/25/08, 12:28:00 PM EDT)
Higher resolution cameras, music, video and games are all driving the need for higher density, low cost data storage. NAND flash memory is excellent for high-density, low-cost and fast write speed data storage. As a result, the adoption of NAND in mobile phones continues to grow at an accelerated pace.
Within mobile phones, the use of NAND flash for improved data storage has grown in three areas:
- Multi-chip Packages (MCP) and Package-On-Package (POP)
- High-density embedded storage in addition to MCPs/POPs
- Card slots in handsets
The historical MCP solution for basic talk-only mobile phones was low-density random access memory (RAM) + NOR. This solution continues to be used today, driven primarily by low-end mobile phones targeting emerging markets. Multimedia phones, however, have adopted NAND based MCP solutions due to the density, cost and write performance advantages of NAND flash.
One of these NAND-based MCP solutions is simply to add NAND flash for data storage to a traditional NOR-based MCP. An example would be Pseudo SRAM (PSRAM) + NOR + NAND, where code is executed directly out of the NOR, NAND is used for data storage, and PSRAM for working memory.
Another NAND-based MCP solution is to replace NOR altogether with DRAM + NAND (in which the DRAM is Low Power SDRAM). In this case, both code and data are stored in the NAND flash. When the mobile phone is turned on, the code is then shadowed (copied) from NAND to DRAM, and thus executed out of the DRAM. The tradeoff is that this takes additional boot up time when the phone is turned on. On the other hand, there are multiple advantages related to cost and simplification, and DRAM is excellent at fast code execution. This solution eliminates the need for NOR, which is more expensive per bit than NAND. Also, NAND flash and DRAM have to their advantage economies of scale as the two most widely used memory technologies. For these reasons, DRAM + NAND combinations are the fastest growing of the NAND-based MCP solutions.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- RF front-ends for GSM mobile handsets continue down path of integration
- NOR continues to battle NAND flash memory in the handset
- Find out what's really inside the iPod; Reuse of components is a good design practice for similar applications, including mobile handsets
- Insights using NAND flash in portable designs
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core