Moving to SystemC TLM for design and verification of digital hardware
Stuart Swan, Qiang Zhu, Xingri Li, Cadence Design Systems, Inc.
EETimes (5/13/2013 9:35 AM EDT)
Design and verification of new digital hardware blocks is becoming increasingly challenging. Today, designers are confronted with a host of issues, including growing design and verification complexity, time-to-market pressures, power goals, and evolving design specifications.
To tackle these challenges, customers are beginning to make a significant change in design methodology, by moving to SystemC transaction-level models (TLM) as the design entry point, and by leveraging high-level synthesis (HLS) in combination with IP reuse. This article presents our experience in working with Fujitsu Semiconductor Ltd. to adopt this new methodology using Cadence® C-to-Silicon Compiler on a data access controller design, and presents the very promising results they reported at a recent C-to-Silicon user group meeting in Japan. The selection of the design, modeling work, and results analysis described in this paper were performed by Fujitsu Semiconductor with some assistance from Cadence.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related White Papers
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Automotive Design Needs Efficient Verification to Survive
- Are you optimizing the benefits of cloud computing for faster reliability verification?
- Importance of VLSI Design Verification and its Methodologies