Moving to SystemC TLM for design and verification of digital hardware
Stuart Swan, Qiang Zhu, Xingri Li, Cadence Design Systems, Inc.
EETimes (5/13/2013 9:35 AM EDT)
Design and verification of new digital hardware blocks is becoming increasingly challenging. Today, designers are confronted with a host of issues, including growing design and verification complexity, time-to-market pressures, power goals, and evolving design specifications.
To tackle these challenges, customers are beginning to make a significant change in design methodology, by moving to SystemC transaction-level models (TLM) as the design entry point, and by leveraging high-level synthesis (HLS) in combination with IP reuse. This article presents our experience in working with Fujitsu Semiconductor Ltd. to adopt this new methodology using Cadence® C-to-Silicon Compiler on a data access controller design, and presents the very promising results they reported at a recent C-to-Silicon user group meeting in Japan. The selection of the design, modeling work, and results analysis described in this paper were performed by Fujitsu Semiconductor with some assistance from Cadence.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
Related White Papers
- Automotive Design Needs Efficient Verification to Survive
- Importance of VLSI Design Verification and its Methodologies
- Design-Stage Analysis, Verification, and Optimization for Every Designer
- Shift Left for More Efficient Block Design and Chip Integration
Latest White Papers
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs