Radiation Tolerance is not just for Rocket Scientists: Mitigating Digital Logic Soft Errors in the Terrestrial Environment
By Synopsys
As technology scales, soft errors from particle radiation are becoming increasingly concerning for in-field reliability. These radiation effects are called Single Event Upsets (SEU) and the frequency of the failures due to SEUs is known as the Soft Error Rate (SER). Soft errors are failures due to external sources. By contrast, hard errors refer to actual process manufacturing defects or electromigration defects that get formed during circuit operation. Hard errors cannot be fixed without changing the silicon; soft errors are usually temporary, and the circuit subsequently returns to functionality.
In older technologies, this SEU problem was limited to radiation-hostile environments such as space. With technologies scaling to smaller geometries, and with the increased number of elements integrated into a system-on-chip (SoC), every component in an SoC is now susceptible to particle radiation. Therefore, the SoC overall has a higher probability of suffering from SEUs. Of the various SoC components, SRAMs and standard-cell sequential elements could experience data upset. Similarly, combinational circuits could experience soft delay errors or glitches which may impact the timing and/or functionality of the SoC and eventually cause data failure. This translates into the possibility of a higher SER for smaller geometry SoCs, and this effect needs to be considered in designs for high-reliability applications like Automotive, Datacenter & High-Performance Computing.
In this paper, we will:
- Review the types of radiation particles and the sources of radiation that impact circuit SER
- Address the techniques to mitigate terrestrial radiation impact in SoC design for high-reliability applications such as Automotive and Datacenter
- Discuss the impact of technology scaling from planar to FinFET on SoC reliability due to the SER effect
- Describe how Synopsys logic libraries are SEU-optimized while still meeting the stringent power, performance, and area (PPA) requirements of FinFET SoCs
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- It's Just a Jump to the Left, Right? Shift Left in IC Design Enablement
- AES 256 algorithm towards Data Security in Edge Computing Environment
- Out of the Verification Crisis: Improving RTL Quality
- The pitfalls of mixing formal and simulation: Where trouble starts
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models