Meeting signal integrity requirements in FPGAs with high-end memory interfaces
Programmable Logic DesignLine
Wider parallel data buses, increasing data rates, and multiple loads are challenges for high-end memory interface designers. The demand for higher bandwidth and throughput is driving the requirement for even faster clock frequencies. As valid signal windows shrink, signal integrity (SI) becomes a dominant factor in ensuring that memory interfaces perform flawlessly.
Chip and PCB-level design techniques can improve Simultaneous Switching Output (SSO) characteristics, making it easier to achieve the signal integrity required in wider memory interfaces. EDA vendors are making a wide range of tools available to designers for optimizing the signal integrity quality of memory interfaces. Features that are integrated on the FPGA silicon die, such as Digitally Controlled Impedance (DCI), simplify the PCB layout design and enhance performance. This article discusses these design techniques and hardware experiment results, illustrating the effect of design parameters on signal integrity.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related White Papers
- How to design 65nm FPGA DDR2 memory interfaces for signal integrity
- Meeting Increasing Performance Requirements in Embedded Applications with Scalable Multicore Processors
- Implementing custom DDR and DDR2 SDRAM external memory interfaces in FPGAs (part 1)
- Delivering High Quality Analog Video Signals With Optimized Video DACs
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core