Meeting signal integrity requirements in FPGAs with high-end memory interfaces
Programmable Logic DesignLine
Wider parallel data buses, increasing data rates, and multiple loads are challenges for high-end memory interface designers. The demand for higher bandwidth and throughput is driving the requirement for even faster clock frequencies. As valid signal windows shrink, signal integrity (SI) becomes a dominant factor in ensuring that memory interfaces perform flawlessly.
Chip and PCB-level design techniques can improve Simultaneous Switching Output (SSO) characteristics, making it easier to achieve the signal integrity required in wider memory interfaces. EDA vendors are making a wide range of tools available to designers for optimizing the signal integrity quality of memory interfaces. Features that are integrated on the FPGA silicon die, such as Digitally Controlled Impedance (DCI), simplify the PCB layout design and enhance performance. This article discusses these design techniques and hardware experiment results, illustrating the effect of design parameters on signal integrity.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- APV - Advanced Professional Video Codec
- RVA23, Multi-cluster, Hypervisor and Android
- CXL 3.0 Controller
Related White Papers
- How to design 65nm FPGA DDR2 memory interfaces for signal integrity
- Implementing custom DDR and DDR2 SDRAM external memory interfaces in FPGAs (part 1)
- Delivering High Quality Analog Video Signals With Optimized Video DACs
- Growing demand for high-speed data in consumer devices gives rise to new generation of low-end FPGAs
Latest White Papers
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models
- Enabling Chiplet Design Through Automation and Integration Solutions
- Shift-Left Verification: Why Early Reliability Checks Matter