Make SoCs flexible with embedded FPGA
Geoff Tate, Flex Logix
EDN (November 30, 2016)
Systems designers have long sought to provide programmability and flexibility in their systems designs to meet varying customer needs and evolving standards. The two most common approaches - FPGAs and MPUs/MCUs - provide different kinds of capabilities and complement each other, but have typically been separate devices. Now, chips with both processors and embedded FPGA are becoming a design option.
With the growth of connectivity, information, and data, there is a growing need for new processing capabilities that can span from ultra-low power <$1 microcontrollers to very large networking chips. Moore’s Law has given rise to the availability of new SoCs and MCUs for existing and new markets with each one of these SoCs/MCUs designed specifically for the market segment it is being targeted. This widespread use of special-purpose architectures greatly increases the need for new designs, however, and the rise of new markets (e.g., IoT) and device types (e.g., sensors) for these new markets is growing faster than the SoC types available.
Related Semiconductor IP
- eFPGA
- Radiation-Hardened eFPGA
- eFPGA IP as a synthesizable RTL core
- eFPGA IP and FPGA Software Built on GLOBALFOUNDRIES 22FDX
- eFPGA IP and FPGA Software Built on Samsung Foundry 28nm FDSOI
Related White Papers
- Enabling error resilience throughout the embedded system
- Programming heterogeneous multicore embedded SoCs
- Dealing with automotive software complexity with virtual prototyping - Part 3: Embedded software testing
- Improve FPGA communications interface clock jitters with external PLLs
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference