Implementation basics for autonomous driving vehicles
By Jan Pantzar (VSORA) and Lauro Rizzatti
The automotive industry is delivering the first implementations of advanced driver-assistance systems (ADAS) for Level 2 (foot off the gas or break) and Level 3 (hands off the wheel) vehicles. Though it’s struggling to develop an autonomous driving (AD) system from L4 (eyes off the road) to L5 (completely self-driving and autonomous) vehicles. The challenge is turning out to be more difficult than anticipated a few years ago.
Implementing an AD system comes down to safely moving a vehicle from point A to point B without human assistance. This can be accomplished by a three-stage state machine called driving control loop that includes perception, motion planning, and motion execution. Perception learns and understands the driving environment, as well as the vehicle position or its localization on a map. The perception stage feeds environment and localization data to the motion or path planning that calculates the trajectory of the vehicle, in turn performed by the motion execution. If perception generates inaccurate data, the trajectory is going to be flawed. In the worst-case, it leads to catastrophic results.
A successful AD system implementation rests on a state-machine architecture that can formulate a truthful understanding of the environment, produce an efficient motion plan, and flawlessly perform its execution.
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- Basics of SoC I/O design: Part 2 - Hot swap & other implementation issues
- Why FIR sensing technology is essential for achieving fully autonomous vehicles
- How to Avoid Fall in Expectations for Automated Driving
- Revolutionizing High-Voltage Controller Chips for Electric Vehicles
Latest White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU