Scalable architectures for high-bandwidth Ethernet line cards
Nilam Ruparelia, Altera Corporation
EETimes (1/10/2011 12:50 PM EST)
As more consumers receive streaming video in various formats over the Internet, demand for bandwidth continues to increase. However, consumers watching streaming movies via their Xbox or Wii, or viewing YouTube on their computers, are not paying more for the additional gigabits they download each month watching these video feeds. This is one of many factors fueling the demand for higher bandwidth while yielding lower price per gigabit of bandwidth.
Thanks to its scale and cost advantages, Ethernet continues to thrive in such environments. Historically, Ethernet has evolved with the promise of ten times the bandwidth at two-and-half times the cost of the previous speed. For example, Gigabit Ethernet started ramping up in PCs and enterprise switches in 2003 when the cost of a 1 Gb port came down to about 2.5x of the cost of a fast Ethernet port. Transition from a 1 Gb port to a 10 Gb port in enterprise and carrier networks has been underway since 2008 as the cost of a 10 Gb port for servers and switches continues to decrease.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- Mapping LMS Adaptive Filter IP Core to Multiplier-Array FPGA Architecture for High Channel-Density VOIP Line Echo Cancellation
- SoC integration changes face of high-speed line cards
- Reconfiguring Design -> C-based architecture assembly supports custom design
- Security dons chip, card mantles
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference