Hardware/software design requirements planning - Part 2: Decomposition using structured analysis
Jeffrey O. Grady, JOG Systems Engineering, Inc.
EETimes (11/7/2011 11:41 PM EST)
In this series of articles, Jeffrey O. Grady, author of “System Verification,” delineates the basics of requirements planning and analysis, an important tool for using Agile programming techniques to achieve better code quality and reliability in complex embedded systems software and hardware projects. Part 2: Decomposition using structure analysis Structured decomposition is a technique for decomposing large complex problems into a series of smaller related problems. We seek to do this for the reasons discussed earlier.
We are interested in an organized or systematic approach for doing this because we wish to make sure we solve the right problem and solve it completely. We wish to avoid, late in the development effort, finding that we failed to account for part of the problem that forces us to spend additional time and money to correct and brings into question the validity of our current solution.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
Related White Papers
- Routing density analysis of ASICs, Structured ASICs, and FPGAs
- Hardware/software design requirements analysis: Part 1 - Laying the ground work
- Hardware/software design requirements planning: Part 3 - Performance requirements analysis
- System Performance Analysis and Software Optimization Using a TLM Virtual Platform
Latest White Papers
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs