H.264 encoder design using Application Engine Synthesis
May 09, 2008 -- videsignline.com
System on Chip design is driven by complex consumer devices that rely on standard algorithms such as H.264, WiMax, or JPEG for their defining capabilities. These reference standards allow room for innovative implementation that result in differentiated products.
Designing these SoCs is an enormous undertaking, with significant cost and risk associated with each project. One way to reduce both project cost and schedule risk is to use Application Engine Synthesis (AES) for the automatic creation of an application engine such as an H.264 encoder from a sequential, untimed C algorithm.
The goal of the project described in this article was to emulate a typical design process for an H.264 encoder and to determine AES's ability to generate efficient hardware designs for real-life, high-complexity applications, while also demonstrating significant savings in terms of time and cost (of resources). We set the target of building an H.264 encoder for D1 size video that would meet real-time requirements (30 frames per second) on the most stringent test sequences, and aimed to complete the project in less than 5 months.
This article describes the process used, targets met, and productivity gains achieved.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- Design Considerations for High Bandwidth Memory Controller
- Applying Continuous Integration to Hardware Design and Verification
- A design of High Efficiency Combo-Type Architecture of MIPI D-PHY and C-PHY
- How to Design SmartNICs Using FPGAs to Increase Server Compute Capacity
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference