How to manage dynamic power in a microcontroller using its non-maskable interrupt
How to manage dynamic power in a microcontroller using its non-maskable interrupt
By Ajit Basarur, Shantanu Prasad Prabhudesai, and Nazmul Hoda, Ittiam Systems
pldesignline.com (August 06, 2008)
Abstract
As portable systems become increasingly power-conscious, the need for smart power management becomes equally important. Besides the main processor, an auxiliary Microcontroller Unit (MCU) often resides on such systems to take care of house keeping activities such as various user interfaces and a real-time clock (RTC), which has to tick even when the system is powered off.
In this article, we suggest a mechanism to implement power management scheme for the MCU based on system switch on and off states by using its non-maskable interrupt (NMI) pin.
1. Typical embedded system overview.
(Click this image to view a larger, more detailed version)
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- A need for static and dynamic Low Power Verification
- FinFET impact on dynamic power
- Dynamically controlled logic gate design for all power modes
- Making interrupt design firmware friendly
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference